3.9.10 \(\int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx\) [810]

Optimal. Leaf size=223 \[ \frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d} \]

[Out]

2/3*b^2/d/cot(d*x+c)^(3/2)-1/2*(a^2-2*a*b-b^2)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)-1/2*(a^2-2*a*b-b^
2)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+1/4*(a^2+2*a*b-b^2)*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/
d*2^(1/2)-1/4*(a^2+2*a*b-b^2)*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+4*a*b/d/cot(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 223, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3754, 3623, 3610, 3615, 1182, 1176, 631, 210, 1179, 642} \begin {gather*} \frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[c + d*x])^2/Sqrt[Cot[c + d*x]],x]

[Out]

((a^2 - 2*a*b - b^2)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) - ((a^2 - 2*a*b - b^2)*ArcTan[1 + Sqr
t[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) + (2*b^2)/(3*d*Cot[c + d*x]^(3/2)) + (4*a*b)/(d*Sqrt[Cot[c + d*x]]) + ((
a^2 + 2*a*b - b^2)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d) - ((a^2 + 2*a*b - b^2)*Lo
g[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3623

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(b*c - a*d)^2*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rule 3754

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rubi steps

\begin {align*} \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx &=\int \frac {(b+a \cot (c+d x))^2}{\cot ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\int \frac {2 a b+\left (a^2-b^2\right ) \cot (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\int \frac {a^2-b^2-2 a b \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx\\ &=\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 \text {Subst}\left (\int \frac {-a^2+b^2+2 a b x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}-\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 d}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} d}\\ &=\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}\\ &=\frac {\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.27, size = 77, normalized size = 0.35 \begin {gather*} \frac {2 \left (\left (-a^2+b^2\right ) \, _2F_1\left (-\frac {3}{4},1;\frac {1}{4};-\cot ^2(c+d x)\right )+a \left (a+6 b \cot (c+d x) \, _2F_1\left (-\frac {1}{4},1;\frac {3}{4};-\cot ^2(c+d x)\right )\right )\right )}{3 d \cot ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[c + d*x])^2/Sqrt[Cot[c + d*x]],x]

[Out]

(2*((-a^2 + b^2)*Hypergeometric2F1[-3/4, 1, 1/4, -Cot[c + d*x]^2] + a*(a + 6*b*Cot[c + d*x]*Hypergeometric2F1[
-1/4, 1, 3/4, -Cot[c + d*x]^2])))/(3*d*Cot[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 56.15, size = 1733, normalized size = 7.77

method result size
default \(\text {Expression too large to display}\) \(1733\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^2/cot(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/6/d*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))*(3*I*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)
,1/2-1/2*I,1/2*2^(1/2))*b^2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((
cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)+3*I*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin
(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*
x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)-6*I*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+s
in(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+
c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)*a*b-3*I*sin(d*x+c)*EllipticPi(((
1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*b^2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-c
os(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)+6*I*sin(d*x+c)
*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(
1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)*a*b-
3*I*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2*((-1+cos(d*x
+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/
2)*cos(d*x+c)+3*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2*
((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin
(d*x+c))^(1/2)*cos(d*x+c)+6*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2
^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x
+c))/sin(d*x+c))^(1/2)*cos(d*x+c)*a*b-3*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2
+1/2*I,1/2*2^(1/2))*b^2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(
d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)+3*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c
))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^
(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)+6*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c
))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(
d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)*a*b-3*sin(d*x+c)*EllipticPi(((1-cos(d*x+
c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*b^2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+
sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)-12*sin(d*x+c)*EllipticF(
((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+si
n(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)*a*b+2*sin(d*x+c)*2^(1/2)*b
^2*cos(d*x+c)+12*2^(1/2)*cos(d*x+c)^2*a*b-2*sin(d*x+c)*2^(1/2)*b^2-12*2^(1/2)*cos(d*x+c)*a*b)/sin(d*x+c)^4/cos
(d*x+c)/(cos(d*x+c)/sin(d*x+c))^(1/2)*2^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 191, normalized size = 0.86 \begin {gather*} -\frac {6 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 6 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 3 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - 3 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - 8 \, {\left (b^{2} + \frac {6 \, a b}{\tan \left (d x + c\right )}\right )} \tan \left (d x + c\right )^{\frac {3}{2}}}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^2/cot(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

-1/12*(6*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 6*sqrt(2)*(a^2 - 2
*a*b - b^2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + 3*sqrt(2)*(a^2 + 2*a*b - b^2)*log(sqrt(2)/
sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 3*sqrt(2)*(a^2 + 2*a*b - b^2)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/t
an(d*x + c) + 1) - 8*(b^2 + 6*a*b/tan(d*x + c))*tan(d*x + c)^(3/2))/d

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^2/cot(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \tan {\left (c + d x \right )}\right )^{2}}{\sqrt {\cot {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**2/cot(d*x+c)**(1/2),x)

[Out]

Integral((a + b*tan(c + d*x))**2/sqrt(cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^2/cot(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*tan(d*x + c) + a)^2/sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^2}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(c + d*x))^2/cot(c + d*x)^(1/2),x)

[Out]

int((a + b*tan(c + d*x))^2/cot(c + d*x)^(1/2), x)

________________________________________________________________________________________